NLTK: Build Document Classifier & Spell Checker with Python




NLTK: Build Document Classifier & Spell Checker with Python

This Natural Language Processing (NLP) tutorial covers core basics of NLP using the well-known Python package Natural Language Toolkit (NLTK). The course helps trainees become familiar with common concepts like tokens, tokenization, stemming, lemmatization, and using regex for tokenization or for stemming. It discusses classification, tagging, normalization of our input or raw text. It also covers some machine learning algorithms such as Naive Bayes.

After taking this course, you will be familiar with the basic terminologies and concepts of Natural Language Processing (NLP) and you should be able to develop NLP applications using the knowledge you gained in this course.


What is Natural Language Processing (NLP)?

Natural language processing, or NLP for short, is the ability of a computer program to understand, manipulate, analyze, and derive meaning from human language in a smart and useful way. By utilizing NLP, developers can organize and structure knowledge to perform tasks such as automatic summarization, translation, named entity recognition, relationship extraction, sentiment analysis, speech recognition, topic segmentation, and spam detection.


What is NLTK?

The Natural Language Toolkit (NLTK) is a suite of program modules and data-sets for text analysis, covering symbolic and statistical Natural Language Processing (NLP). NLTK is written in Python. Over the past few years, NLTK has become popular in teaching and research.

NLTK includes capabilities for tokenizing, parsing, and identifying named entities as well as many more features.

This Natural Language Processing (NLP) tutorial mainly cover NLTK modules.


About the course

This Natural Language Processing (NLP) tutorial is basically designed to make you understand the fundamental concepts of Natural Language Processing (NLP) with Python, and we will be learning some machine learning algorithms as well because natural language processing and machine learning move hand in hand as NLP employs machine learning techniques to learn and understand what a sentence is saying, or what a user has said and it sends an appropriate response back. 

So, by the end of this course, I hope you will have a clear idea, a clear view of the core fundamental concepts of NLP and how we can actually make applications using these core concepts.


Looking forward to seeing you in the course.


----

Keywords: Natural Language Processing (NLP) tutorial; Python NLTK; Machine Learning; Sentiment Analysis; Data Mining; Text Analysis; Text Processing

NLP with Python - Analyzing Text with the Natural Language Toolkit (NLTK) - Natural Language Processing (NLP) Tutorial

Url: View Details

What you will learn
  • NLTK Main Functions: Concordance, Similar, Lexical Dispersion Plot
  • Text Tokenization
  • Text Normalization: Stemming & Lemmatization

Rating: 3.7

Level: Intermediate Level

Duration: 5.5 hours

Instructor: GoTrained Academy


Courses By:   0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

About US

The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.


© 2021 hugecourses.com. All rights reserved.
View Sitemap