Regression Analysis for Statistics & Machine Learning in R




Regression Analysis for Statistics & Machine Learning in R

            With so many R Statistics & Machine Learning courses around, why enrol for this?

Regression analysis is one of the central aspects of both statistical and machine learning based analysis. This course will teach you regression analysis for both statistical data analysis and machine learning in R in a practical hands-on manner. It explores the relevant concepts  in a practical manner from basic to expert level. This course can help you achieve better grades, give you new analysis tools for your academic career, implement your knowledge in a work setting or make business forecasting related decisions. All of this while exploring the wisdom of an Oxford and Cambridge educated researcher.

My name is MINERVA SINGH and I am an Oxford University MPhil (Geography and Environment) graduate. I recently finished a PhD at Cambridge University (Tropical Ecology and Conservation). I have several years of experience in analyzing real life data from different sources using data science related techniques and producing publications for international peer reviewed journals. This course is based on my years of regression modelling experience and implementing different regression models on real life data.  Most statistics and machine learning courses and books only touch upon the basic aspects of regression analysis. This does not teach the students about all the different regression analysis techniques they can apply to their own data in both academic and business setting, resulting in inaccurate modelling. My course will change this. You will go all the way from implementing and inferring simple OLS (ordinary least square) regression models to dealing with issues of multicollinearity in regression to machine learning based regression models. 

Become a Regression Analysis Expert and Harness the Power of R for Your Analysis

  • Get started with R and RStudio. Install these on your system, learn to load packages and read in different types of data in R

  • Carry out data cleaning and data visualization using R

  • Implement ordinary least square (OLS) regression in R and learn how to interpret the results.

  • Learn how to deal with multicollinearity both through variable selection and regularization techniques such as ridge regression

  • Carry out variable and regression model selection using both statistical and machine learning techniques, including using cross-validation methods.

  • Evaluate regression model accuracy

  • Implement generalized linear models (GLMs) such as logistic regression and Poisson regression. Use logistic regression as a binary classifier to distinguish between male and female voices.

  • Use non-parametric techniques such as Generalized Additive Models (GAMs) to work with non-linear and non-parametric data. 

  • Work with tree-based machine learning models

  • Implement machine learning methods such as random forest regression and gradient boosting machine regression for improved regression prediction accuracy.

  • Carry out model selection

Become a Regression Analysis Pro and Apply Your Knowledge on Real-Life Data

This course is your one shot way of acquiring the knowledge of statistical and machine learning analysis that I acquired from the rigorous training received at two of the best universities in the world, the perusal of numerous books and publishing statistically rich papers in a renowned international journal like PLOS One. Specifically, the course will:

   (a) Take the students with a basic level of statistical knowledge to perform some of the most common advanced regression analysis based techniques

   (b) Equip students to use R for performing the different statistical and machine learning data analysis and visualization tasks 

   (c) Introduce some of the most important statistical and machine learning concepts to students in a practical manner such that the students can apply these concepts for practical data analysis and interpretation

   (d) Students will get a strong background in some of the most important statistical and machine learning concepts for regression analysis.

   (e) Students will be able to decide which regression analysis techniques are best suited to answer their research questions and applicable to their data and interpret the results

It is a practical, hands-on course, i.e. we will spend some time dealing with some of the theoretical concepts related to both statistical and machine learning regression analysis. However, the majority of the course will focus on implementing different techniques on real data and interpreting the results. After each video, you will learn a new concept or technique which you may apply to your own projects. 

TAKE ACTION TODAY! I will personally support you and ensure your experience with this course is a success.

Learn Complete Hands-On Regression Analysis for Practical Statistical Modelling and Machine Learning in R

Url: View Details

What you will learn
  • Implement and infer Ordinary Least Square (OLS) regression using R
  • Apply statistical and machine learning based regression models to deals with problems such as multicollinearity
  • Carry out variable selection and assess model accuracy using techniques like cross-validation

Rating: 4.54167

Level: All Levels

Duration: 7.5 hours

Instructor: Minerva Singh


Courses By:   0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

About US

The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.


© 2021 hugecourses.com. All rights reserved.
View Sitemap