Python for Time Series Analysis and Forecasting
Python for Time Series Analysis and Forecasting
Use Python to Understand the Now and Predict the Future!
Time series analysis and forecasting is one of the key fields in statistical programming. It allows you to
see patterns in time series data
model this data
finally make forecasts based on those models
and of of this you can now do with the help of Python
Due to modern technology the amount of available data grows substantially from day to day. Successful companies know that. They also know that decisions based on data collected in the past, and modeled for the future, can make a huge difference. Proper understanding and training in time series analysis and forecasting will give you the power to understand and create those models. This can make you an invaluable asset for your company/institution and will boost your career!
What will you learn in this course and how is it structured?
First of all we will discuss the general idea behind time series analysis and forecasting. It is important to know when to use these tools and what they actually do.
After that you will learn about statistical methods used for time series. You will hear about autocorrelation, stationarity and unit root tests. You will also learn how to read a time series chart. This is a crucial skill because things like mean, variance, trend or seasonality are a determining factor for model selection.
We will also create our own time series charts including smoothers and trend lines.
Then you will see how different models work, how they are set up in Python and how you can use them for forecasting and predictive analytics. Models taught are: ARIMA, exponential smoothing, seasonal decomposition and simple models acting as benchmarks. Of course all of this is accompanied by homework assignments.
Where are those methods applied?
In nearly any field you will see those methods applied. Especially econometrics and finance love time series analysis. For example stock data has a time component which makes this sort of data a prime target for forecasting techniques. But of course also in academia, medicine, business or marketing techniques taught in this course are applied.
Is it hard to understand and learn those methods?
Unfortunately learning material on Time Series Analysis Programming in Python is quite technical and needs tons of prior knowledge to be understood.
With this course it is the goal to make modeling and forecasting as intuitive and simple as possible for you.
While you need some knowledge in maths and Python, the course is meant for people without a major in a quantitative field. Basically anybody dealing with time data on a regular basis can benefit from this course.
How do I prepare best to benefit from this course?
It depends on your prior knowledge. But as a rule of thumb you should know how to handle standard tasks in Python.
Work with time series and time related data in Python - Forecasting, Time Series Analysis, Predictive Analytics
Url: View Details
What you will learn
- use Python to perform calculations with time and date based data
- create models for time series data
- use models for forecasting

Rating: 4.2
Level: All Levels
Duration: 5 hours
Instructor: R-Tutorials Training
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.
View Sitemap