Machine Learning for Data Analysis: Data Profiling & QA




Machine Learning for Data Analysis: Data Profiling & QA

This course is PART 1 of a 4-PART SERIES designed to help you build a strong, foundational understanding of Machine Learning:


  • PART 1: QA & Data Profiling

  • PART 2: Classification Modeling

  • PART 3: Regression & Forecasting

  • PART 4: Unsupervised Learning

This course makes data science approachable to everyday people, and is designed to demystify powerful Machine Learning tools & techniques without trying to teach you a coding language at the same time.

Instead, we'll use familiar, user-friendly tools like Microsoft Excel to break down complex topics and help you understand exactly HOW and WHY machine learning works before you dive into programming languages like Python or R. Unlike most Data Science and Machine Learning courses, you won't write a SINGLE LINE of code.


COURSE OUTLINE:

In this Part 1 course, we’ll introduce the machine learning landscape and workflow, and review critical QA tips for cleaning and preparing raw data for analysis, including variable types, empty values, range & count calculations, table structures, and more.

We’ll cover univariate analysis with frequency tables, histograms, kernel densities, and profiling metrics, then dive into multivariate profiling tools like heat maps, violin & box plots, scatter plots, and correlation:


  • Section 1: Machine Learning Intro & Landscape

    • Machine learning process, definition, and landscape

  • Section 2: Preliminary Data QA

    • Variable types, empty values, range & count calculations, left/right censoring, etc.

  • Section 3: Univariate Profiling

    • Histograms, frequency tables, mean, median, mode, variance, skewness, etc.

  • Section 4: Multivariate Profiling

    • Violin & box plots, kernel densities, heat maps, correlation, etc.


Throughout the course we’ll introduce real-world scenarios designed to help solidify key concepts and tie them back to actual business intelligence case studies. You’ll use profiling metrics to clean up product inventory data for a local grocery, explore Olympic athlete demographics with histograms and kernel densities, visualize traffic accident frequency with heat maps, and much more.

If you’re ready to build the foundation for a successful career in Data Science, this is the course for you.


__________

Join today and get immediate, lifetime access to the following:

  • High-quality, on-demand video

  • Machine Learning: Data Profiling ebook

  • Downloadable Excel project file

  • Expert Q&A forum

  • 30-day money-back guarantee


Happy learning!

-Josh M. (Lead Machine Learning Instructor, Maven Analytics)


__________

Looking for our full business intelligence stack? Search for "Maven Analytics" to browse our full course library, including Excel, Power BI, MySQL, and Tableau courses!


See why our courses are among the TOP-RATED on Udemy:


"Some of the BEST courses I've ever taken. I've studied several programming languages, Excel, VBA and web dev, and Maven is among the very best I've seen!" Russ C.


"This is my fourth course from Maven Analytics and my fourth 5-star review, so I'm running out of things to say. I wish Maven was in my life earlier!" Tatsiana M.


"Maven Analytics should become the new standard for all courses taught on Udemy!" Jonah M.

Machine Learning made simple with Excel! Learn data profiling for advanced analysis & business intelligence (no coding!)

Url: View Details

What you will learn
  • Build foundational machine learning & data science skills, without writing complex code
  • Use intuitive, user-friendly tools like Microsoft Excel to introduce & demystify machine learning tools & techniques
  • Prepare raw data for analysis using QA tools like variable types, range calculations & table structures

Rating: 4.54232

Level: Beginner Level

Duration: 2.5 hours

Instructor: Maven Analytics


Courses By:   0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

About US

The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.


© 2021 hugecourses.com. All rights reserved.
View Sitemap