Optimization with Python: Solve Operations Research Problems
Optimization with Python: Solve Operations Research Problems
Operational planning and long term planning for companies are more complex in recent years. Information changes fast, and the decision making is a hard task. Therefore, optimization algorithms (operations research) are used to find optimal solutions for these problems. Professionals in this field are one of the most valued in the market.
In this course you will learn what is necessary to solve problems applying Mathematical Optimization and Metaheuristics:
Linear Programming (LP)
Mixed-Integer Linear Programming (MILP)
NonLinear Programming (NLP)
Mixed-Integer Linear Programming (MINLP)
Genetic Algorithm (GA)
Multi-Objective Optimization Problems with NSGA-II (an introduction)
Particle Swarm (PSO)
Constraint Programming (CP)
Second-Order Cone Programming (SCOP)
NonConvex Quadratic Programmin (QP)
The following solvers and frameworks will be explored:
Solvers: CPLEX – Gurobi – GLPK – CBC – IPOPT – Couenne – SCIP
Frameworks: Pyomo – Or-Tools – PuLP – Pymoo
Same Packages and tools: Geneticalgorithm – Pyswarm – Numpy – Pandas – MatplotLib – Spyder – Jupyter Notebook
Moreover, you will learn how to apply some linearization techniques when using binary variables.
In addition to the classes and exercises, the following problems will be solved step by step:
Optimization on how to install a fence in a garden
Route optimization problem
Maximize the revenue in a rental car store
Optimal Power Flow: Electrical Systems
Many other examples, some simple, some complexes, including summations and many constraints.
The classes use examples that are created step by step, so we will create the algorithms together.
Besides this course is more focused in mathematical approaches, you will also learn how to solve problems using artificial intelligence (AI), genetic algorithm, and particle swarm.
Don't worry if you do not know Python or how to code, I will teach you everything you need to start with optimization, from the installation of Python and its basics, to complex optimization problems. Also, I have created a nice introduction on mathematical modeling, so you can start solving your problems.
I hope this course can help you in your carrier. Yet, you will receive a certification from Udemy.
Operations Research | Operational Research | Mathematical Optimization
See you in the classes!
Solve optimization problems with CPLEX, Gurobi, Pyomo... using linear programming, nonlinear, evolutionary algorithms...
Url: View Details
What you will learn
- Solve optimization problems using linear programming, mixed-integer linear programming, nonlinear programming, mixed-integer nonlinear programming,
- LP, MILP, NLP, MINLP, SCOP, NonCovex Problems
- Main solvers and frameworks, including CPLEX, Gurobi, and Pyomo
Rating: 4.60345
Level: All Levels
Duration: 12.5 hours
Instructor: Rafael Silva Pinto
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.
View Sitemap