Natural Language Processing: Machine Learning NLP In Python
Natural Language Processing: Machine Learning NLP In Python
This course takes you from a beginner level to being able to understand NLP concepts, linguistic theory, and then practice these basic theories using Python - with very simple examples as you code along with me.
Get experience doing a full real-world workflow from Collecting your own Data to NLP Sentiment Analysis using Big Datasets of over 50,000 Tweets.
Data collection: Scrape Twitter using: OSINT - Open Source Intelligence Tools: Gather text data using real-world techniques. In the real world, in many instances you would have to create your own data set; i.e source your data instead of downloading a clean, ready-made file online
Use Python to search relevant tweets for your study and NLP to analyze sentiment.
Language Syntax: Most NLP courses ignore the core domain of Linguistics. This course explains the fundamentals of Language Syntax & Parse trees - the foundation of how a machine can interpret the structure of s sentence.
New to Python: If you are new to Python or any computer programming, the course instructions make it easy for you to code together with me. I explain code line by line.
No Installs, we go straight to coding - Code using Google Colab - to be up-to-date with what's being used in the Data Science world 2021!
The gentle pace takes you gradually from these basics of NLP foundation to being able to understand Mathematical & Linguistic (English-Language-based, Non-Mathematical) theories of Deep Learning.
Natural Language Processing Foundation
Linguistics & Semantics - study the background theory on natural language to better understand the Computer Science applications
Pre-processing Data (cleaning)
Regex, Tokenization, Stemming, Lemmatization
Name Entity Recognition (NER)
Part-of-Speech Tagging
SQuAD
SQuAD - Stanford Question Answer Dataset. Train your Q&A Model on this awesome SQuAD dataset.
Libraries:
NLTK
Sci-kit Learn
Hugging Face
Tensorflow
Pytorch
SpaCy
Twint
The topics outlined below are taught using practical Python projects!
Parse Tree
Markov Chain
Text Classification & Sentiment Analysis
Company Name Generator
Unsupervised Sentiment Analysis
Topic Modelling
Word Embedding with Deep Learning Models
Closed Domain Question Answering (Like asking questions on many different topics, from Beyonce to Iranian Cuisine)
LSTM using TensorFlow, Keras Sequence Model
Speech Recognition
Convert Speech to Text
Neural Networks
This is taught from first principles - comparing Biological Neurons in the Human Brain to Artificial Neurons.
Practical project: Sentiment Analysis of Steam Reviews
Word Embedding: This topic is covered in detail, similar to an undergraduate course structure that includes the theory & practical examples of:
TF-IDF
Word2Vec
One Hot Encoding
gloVe
Deep Learning
Recurrent Neural Networks
LSTMs
Get introduced to Long short-term memory and the recurrent neural network architecture used in the field of deep learning.
Build models using LSTMs
A Complete Beginner NLP Syllabus. Practicals: Linguistics, Flask,Sentiment, Scrape Tweets, Chatbot, Hugging Face & more!
Url: View Details
What you will learn
- Use Flask to Deploy A Sentiment Analysis Model To A Web Interface
- Libraries: Hugging Face, NLTK, SpaCy, Keras, Sci-kit Learn, Tensorflow, Pytorch, Twint
- Linguistics Foundation To Help Learn NLP Concepts
Rating: 4.37037
Level: Beginner Level
Duration: 19.5 hours
Instructor: Nidia Sahjara
Courses By: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
About US
The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.
View Sitemap