Google Cloud Machine Learning Engineer Certification Prep




Google Cloud Machine Learning Engineer Certification Prep

Machine Learning Engineer is a rewarding, in demand role, and increasingly important to organizations moving building data intensive services in the cloud.  The Google Cloud Professional Machine Learning Engineer certification is one of the field's most recognized credentials. This course will help prepare you to take and pass the exam.  Specifically, this course will help you understand the details of:


  • Building and deploying ML models to solve business challenges using Google Cloud services and best practices for machine learning

  • Aspects of machine learning model architecture, data pipelines structures, optimization, as well as monitoring model performance in production

  • Fundamental concepts of model development, infrastructure management, data engineering, and data governance

  • Preparing data, optimizing storage formats, performing exploratory data analysis, and handling missing data

  • Feature engineering, data augmentation, and feature encoding to maximize the likelihood of building successful models

  • Understand responsible AI throughout the ML development process and apply proper controls and governance to ensure fairness in machine learning models.

By the end of this course, you will know how to use Google Cloud services for machine learning and just as importantly, you will understand machine learning concepts and techniques needed to use those services effectively.


Unlike courses that set out to teach you how to use particular Google Cloud services, this course is designed to teach you services as well as all the topics covered in the Google Cloud Professional Machine Learning Exam Guide, including machine learning fundamentals and techniques.


The course begins with a discussion of framing business problems as machine learning problems followed by a chapter on the technical framing on ML problems.  We next review the architecture of training pipelines and supporting ML services in Google Cloud, such as:

  • Vertex AI Datasets

  • AutoML

  • Vertex AI Workbenches

  • Cloud Storage

  • BigQuery

  • Cloud Dataflow

  • Cloud Dataproc. 

Machine learning and infrastructure and security are reviewed next.

We then shift focus to building and implementing machine learning models starting with managing and preparing data for machine learning, building machine learning models, and training and testing machine learning models. This is followed by chapters on machine learning serving and monitoring and tuning and optimizing both the training and serving of machine learning models.

Machine learning operations, also known as MLOps, borrow heavily from software engineering practices. As a machine engineer, you will use your understanding of software engineering practices and apply them to machine learning.  Machine learning engineers know how to use ML tools, build models, deploy to production, and monitor ML services. They also know how to tune pipelines and optimize the use of compute and storage resources.   

Machine learning engineers and data engineers complement each other.  Data engineers build services and pipelines for collecting, storing, and managing data while machine learning engineers use those data services as a starting point for accessing data and building ML models to solve specific business problems.



Building, Deploying, and Managing Machine Learning Services at Scale

Url: View Details

What you will learn
  • Understand how to use Google Cloud services to build, deploy, and manage machine learning models in production
  • Use Vertex AI, BigQuery, Cloud Dataflow, and Cloud Dataproc in ML pipelines
  • Tune training and serving pipelines

Rating: 4.27857

Level: All Levels

Duration: 5.5 hours

Instructor: Dan Sullivan


Courses By:   0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

About US

The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or endorsement of hugecourses.com.


© 2021 hugecourses.com. All rights reserved.
View Sitemap